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Abstract

In order to investigate further nonlinear asymmetric vibrations of a clamped circular plate under a harmonic excitation,

we reexamine a primary resonance, studied by Yeo and Lee [Corrected solvability conditions for non-linear asymmetric

vibrations of a circular plate, Journal of Sound and Vibration 257 (2002) 653–665] in which at most three stable steady-state

responses (one standing wave and two traveling waves) are observed to exist. Further examination, however, tells that

there exist at most five stable steady-state responses: one standing wave and four traveling waves. Two of the traveling

waves lose their stability by Hopf bifurcation and have a sequence of period-doubling bifurcations leading to chaos. When

the system has five attractors: three equilibrium solutions (one standing wave and two traveling waves) and two chaotic

attractors (two modulated traveling waves), the basin boundaries of the attractors on the principal plane are obtained.

Also examined is how basin boundaries of the modulated motions (quasi-periodic and chaotic motions) evolve as a system

parameter varies. The basin boundaries of the modulated motions turn out to have the fractal nature.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Circular plates experience mid-plane stretching when deflected. The influence of this stretching on the
dynamic response increases with the amplitude of the response. Then geometric nonlinearity due to the
stretching should be included in the analysis. Using the dynamic analogue [1] of the von Kármán equations,
Sridar et al. [2] studied nonlinear modal interactions of asymmetric vibrations of circular plates by deriving
solvability conditions. Using these conditions they investigated the primary resonance (when excitation
frequency is near the natural frequency of an asymmetric mode) to expect that the stable steady-state response
is in the form of standing wave. Succeeding Sridar et al., Lee and his colleagues [3–8] have done a series of
works on modal interaction of asymmetric vibrations of circular plates. Yeo and Lee [3] found that these
conditions were misderived, and then corrected the conditions. They observed that in the primary resonance,
the steady-state response could have not only the form of standing wave but also the form of traveling wave.
Furthermore at most three stable steady-state responses (one standing wave and two traveling waves) were
observed to exist. In case of internal resonance, in which the natural frequencies of two asymmetric modes are
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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commensurable, Lee and Yeo [4] and Lee et al. [5] analyzed modal interactions of a clamped circular
plate on an elastic foundation. For imperfect circular plates, Touzé et al. [9] and Thomas et al. [10] investigated
the local bifurcations analytically and experimentally, respectively. Yeo and Lee [7] studied global bifurcations
in modal interactions of a damped imperfect circular plate in order to find conditions under which
Silnikov-type homoclinic orbit exists. Global bifurcations in modal interactions of an undamped imperfect
circular plate were studied in terms of breaking of heteroclinic orbits and breaking of invariant tori by
Samoylenko and Lee [8].

This study reexamines the primary resonance studied by Yeo and Lee [3] in order to investigate further
nonlinear asymmetric vibrations of a perfect circular plate under a harmonic excitation. Further examination,
however, tells that there exist at most five stable steady-state responses: one standing wave and four traveling
waves. Two of the traveling waves lose their stability by Hopf bifurcation and have a sequence of period-
doubling bifurcations leading to chaos. When the system has five attractors: three equilibrium solutions (one
standing wave and two traveling waves) and two chaotic attractors (two modulated traveling waves), the basin
boundaries of the attractors on the principal plane are obtained. Also examined is how basin boundaries of the
modulated motions (quasi-periodic and chaotic motions) evolve as a system parameter varies. The basin
boundaries of the modulated motions turn out to have the fractal nature.

2. Equations of motion

The equations governing the free, undamped oscillations of non-uniform circular plates were derived by
Efstathiades [1]. These equations are simplified to fit the special case of uniform plates, and damping and
forcing terms are added. Then the non-dimensionalized equations of motion of a circular plate shown in Fig. 1
are given as follows [2,11,12]:
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Fig. 1. A schematic diagram of a clamped circular plate.
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where e ¼ 12(1�n2)h2/R2 is a small parameter, n is Poisson’s ratio, h is the thickness, R is the radius, c is the
damping coefficient, p is the forcing function, w is the deflection of middle surface, and F is the force function
(stress function) satisfying compatibility condition.

The boundary conditions are developed for the plate, which is clamped along a circular edge. For all t and y

w ¼ 0;
qw

qr
¼ 0 at r ¼ 1, (5a,b)
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where radius R is assumed to be a non-dimensionalized radius, 1. In addition, it is necessary to require the
solution to be bounded at r ¼ 0.

In order to consider the harmonic excitation we assume the forcing function p as follows:

pðr; y; tÞ ¼
X1
m¼1

P0mf0m þ 2
X1

n;m¼1

PnmfnmðrÞ cosðnyþ tnmÞ

" #
cos lt, (7)

where the linear symmetric vibration modes fnm(r) correspond to the natural frequencies onm, and tnm denotes
phase difference of the excitation, corresponding to the angular displacement y. In these expressions, the first
subscript n refers to the number of nodal diameters, the second subscript m the number of nodal circles
including boundary, Pnm the coefficients of the forcing, l the frequency of the harmonic excitation.

3. Steady-state responses

Yeo and Lee [3] considered the case of primary resonance, in which the frequency of excitation l is near one
of the natural frequencies, say, o11 ¼ 21.2604. The corresponding mode has one nodal diameter and no other
nodal circle but the boundary. They derived a system of autonomous ordinary differential equations with
dimension four given as follows:

a0 ¼ �c11aþ
P11

2o11
sin ma, (8a)

b0 ¼ �c11bþ
P11

2o11
sin mb, (8b)

am0a ¼ saþ
g

8o11
aða2 þ 2b2

Þ þ
P11

2o11
cos ma, (8c)

bm0b ¼ sbþ
g

8o11
bðb2
þ 2a2Þ þ

P11

2o11
cos mb, (8d)
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where a, b and ma, mb denote amplitude and phase variables, respectively, corresponding to the mode with
natural frequency o11. Parameters c11, P11 and g denote damping coefficient, excitation amplitude, and
nonlinear coefficient, respectively, corresponding to the mode. The external detuning parameter s is defined by
l ¼ o11 þ ŝ and ŝ ¼ �s. It is worthwhile to note that system (1) is invariant under the interchanges of
variables such as a2b and ma2mb. Since our main concern is steady-state responses of the plate, first of all,
we consider equilibrium solutions (a0 ¼ b0 ¼ m0a ¼ m0b ¼ 0), each of which corresponds to a steady-state
response. We can write the steady-state response to the first-order approximation as

w ¼ f11fa cosðlt� ma þ yþ tÞ þ b cosðlt� mb � y� tÞg, (9)

where the response w is a superposition of the two traveling waves rotating clockwise and counterclockwise,
respectively, and t is a phase difference corresponding to y. When a ¼ b and ma ¼ mb, form (9) is reduced to a
standing wave as follows:

w ¼ 2f11a cosðlt� maÞ cosðyþ tÞ. (10)

4. Stability and basin boundaries

4.1. Steady-state responses and their stability

Yeo and Lee [3] plotted Fig. 2 to show the amplitudes a, b of equilibrium solutions of system (4) as functions
of detuning parameter �s ¼ ŝ when {n, e, ec11, eP11, g} ¼ {1/3, 0.001067, 0.01, 4, �772.04}. Solid and dotted
lines denote, respectively, stable (S: the first abbreviation) and unstable (U) responses. Branches SS1, US1, SS2
and US2 represent standing (S: the second abbreviation) waves (a ¼ b), while ST1, UT1 and UT2 represent
traveling (T) waves (a 6¼b). The figure shows that the response curve corresponding to standing waves is similar
with the response curve of the Duffing oscillator, except that the branch SS1 changes its stability at pitchfork
bifurcation point ŝA (0.0245). Reminding the invariance of the system, we can see that there exist two stable
traveling waves (denoted by ST1) bifurcated at the point. One (ST1-1: a4b) is rotating clockwise and the
other (ST1-2: aob) rotating counter-clockwise. We believe that a close investigation into regions Z1, Z2, and
Z3 is needed. All responses in these regions look unstable, which is a remarkable contrary to the saddle-node
bifurcation.

Enlargements of regions Z1, Z2 and Z3 in Fig. 2 are shown in Fig. 3(a), (b) and (c), respectively. More stable
branches ST2 and SS1 are some rewards of the close investigation. The branch ST2 representing stable
traveling wave changes its stability at Hopf bifurcation points, ŝD (0.13264) and ŝF (1.28484). The branch SS1
representing stable standing wave regains its stability at pitchfork bifurcation points, ŝG (1.28554). These
figures show that the response curves have four saddle-node bifurcation points, ŝB (0.0950), ŝC (0.13248),
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Fig. 2. Variations of the amplitudes with detuning parameter ŝ ¼ �s. —, stable; � � � � � � , unstable [3].
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ŝE (0.42902) and ŝH (1.28586). When ŝCoŝoŝD, there exist five stable steady-state responses, SS2, ST1-1
(clockwise), ST1-2 (counter-clockwise), ST2-1 (clockwise) and ST2-2 (counter-clockwise). The initial condition
determines which deflection is to be realized.

4.2. Chaotic motions

In view of Hopf bifurcations at ŝD and ŝF , we can see that when ŝDoŝoŝF , the unstable branches UT2 of
Fig. 3 generate periodic solutions of system (8). The periodicity of amplitude and phase variables implies that
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each component of response (9) becomes aperiodic. In consequence this aperiodicity of components results in
amplitude- and phase-modulated motions of the plate. In order to examine the behavior of the periodic
solutions of system (8) we construct the Poincaré map by using a hyperplane, ma ¼ �0:12aþ 3:1834.
Fig. 4. Bifurcation diagram for the Poincaré map of the steady-state solutions generated from UT2.
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ARTICLE IN PRESS
H.D. Park, W.K. Lee / Journal of Sound and Vibration 315 (2008) 556–568562
The bifurcation diagram in Fig. 4 shows the relation between ŝ and a of periodic solutions in the map. The
diagram also shows the period-doubling bifurcation leading to the chaotic motions as in Refs. [13,14]. The
phase trajectories of chaotic motions at detuning parameter ŝ ¼ 0:132777, representing modulated traveling
waves rotating clockwise (generated from UT2-1) and counter-clockwise (generated from UT2-2), are shown
in Fig. 5(a) and (b), respectively. In order to show quantitatively that the motions shown in Fig. 5(a) and (b)
are truly chaotic, we calculated the largest Lyapunov exponents of long-term responses for system (8).
Table 1

Equilibrium solutions for different ŝ values

ŝ xi x1 x2 x3 x4

0.132643 (P-1) x1 �0.7514337 0.0604117 �0.7514337 0.0604117

x2(1) �3.8755831 2.0383368 1.4460590 0.2278031

x2(2) 1.4460590 0.2278031 �3.8755831 2.0383368

0.132752 (P-2) x1 �0.7506858 0.0602907 �0.7506858 0.0602907

x2(1) �3.8681330 2.0275357 1.4641592 0.2336915

x2(2) 1.4641592 0.2336915 �3.8681330 2.0275357

0.132765 (P-4) x1 �0.7505968 0.0602764 �0.7505968 0.0602764

x2(1) �3.8673651 2.0264260 1.4660641 0.2343160

x2(2) 1.4660641 0.2343160 �3.8673651 2.0264260

0.132771 (P-8) x1 �0.7505557 0.0602696 �0.7505557 0.0602696

x2(1) �3.8670172 2.0259236 1.4669295 0.2346000

x2(2) 1.4669295 0.2346000 �3.8670172 2.0259236

0.1327711 (P-16) x1 �0.7505550 0.0602696 �0.7505550 0.0602696

x2(1) �3.8670115 2.0259153 1.4669439 0.2346047

x2(2) 1.4669439 0.2346047 �3.8670115 2.0259153

0.1327713 (P-32) x1 �0.7505536 0.0602693 �0.7505536 0.0602693

x2(1) �3.8670000 2.0258986 1.4669726 0.2346141

x2(2) 0.2346141 1.4669726 �3.8670000 2.0258986

0.132777 (P-N) x1 �0.7504939 0.0060260 �0.7504939 0.0060260

x2(1) �3.8665029 2.0251810 1.4682119 0.2350211

x2(2) 1.4682119 0.2350211 �3.8665029 2.0251810

Fig. 7. New Cartesian coordinates, Z1 and Z2, on the principal plane.
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The results are shown in Fig. 6(a) and (b), respectively, corresponding to attractors in the cases of a4b and
aob. In principle, a response is chaotic if the exponent is positive. The figure tells not only that the largest
Lyapunov exponent corresponding to each attractor (ŝ ¼ 0:132777) in Fig. 5(a) and (b) has a positive value,
1.1173, but also that the region of positive exponent agrees with the region of aperiodic motions in Fig. 4.

4.3. Basin boundary for the chaotic motions

It is found that there exist at most five stable responses: one standing wave and four traveling waves. Two of
traveling waves lose their stability by Hopf bifurcations and experience a sequence of period-doubling
Table 2

Unit vectors defining the principal plane for detuning parameter

ŝ ui ui1 ui2 ui3 ui4

0.132643 (P-1) u1 �0.7514337 0.0604117 �0.7514337 0.0604117

u2 �3.8755831 �2.0383368 1.4460590 0.2278031

0.132752 (P-2) u1 �0.6701989 0.2254626 0.6701989 �0.2254626

u2 �0.2747280 0.6515555 �0.2747280 0.6515555

0.132765 (P-4) u1 �0.6702793 0.2252236 0.6702793 �0.2252236

u2 �0.2741326 0.6518062 �0.2741326 0.6518062

0.132771 (P-8) u1 �0.6703157 0.2251152 0.6703157 �0.2251152

u2 �0.2738621 0.6519200 �0.2738621 0.6519200

0.1327711 (P-16) u1 �0.6703163 0.2251134 0.6703163 �0.2251134

u2 �0.2738576 0.6519218 �0.2738576 �0.2251134

0.1327713 (P-32) u1 �0.6703175 0.2251098 0.6703175 �0.2251098

u2 �0.2738487 0.6519255 �0.2738487 0.6519255

0.132777 (P-N) u1 �0.6703696 0.2249546 0.6703696 �0.2249546

u2 �0.2734615 0.6520881 �0.2734615 0.6520881

Fig. 8. The basins of attraction in the principal plane for detuning parameter, ŝ ¼ 0:132777: &, the stable equilibrium solution SS2;

n, the unstable equilibrium solution UT2-1; ,, the unstable equilibrium solution UT2-2. The black, dark gray and gray basins are

attracted to SS2, ST1-1 and ST1-2, respectively. The white basins at the right (in Z4) and the left are attracted to chaotic motions generated

from UT2-1 and UT2-2, respectively.
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bifurcations leading to chaos. We consider the case of {n, e, ec, es, eP11, g} ¼ {1
3
, 0.001067, 0.01, 0.132777, 4,

�772.046}, when the system has five attractors: three equilibrium solutions (one standing wave and two traveling
waves) and two chaotic attractors (modulated traveling waves). Then the asymptotic behavior of the system
depends on the initial condition. A set of initial states, a basin of attraction, is attracted to one of attractors.

Having difficulty in representing graphically the basins of attraction in a four-dimensional space, we use the
concept of the principal plane [15]. This two-dimensional plane includes three equilibrium points (listed in
Table 1) of the system corresponding to one stable standing wave (SS2) and two unstable traveling waves
(UT2-1 and UT2-2). From Table 1, noting that two equilibrium solutions, UT2-1 and UT2-2 are located at
the equal distances from SS2 solution, we establish a Cartesian coordinate system Z1, Z2 on the principal plane,
so that the SS2 solution is at the origin and two equilibrium solutions, UT2-1 and UT2-2 are at equal distances
from the Z2 axes, as shown in Fig. 7. Let u1 and u2 be unit vectors along the Z1 and Z2 axes, respectively. Then
the principal plane can be defined by these unit vectors:

u1 ¼
x2ð1Þ � x2ð2Þ

jx2ð1Þ � x2ð2Þj
; u2 ¼

x2ð1Þ þ x2ð2Þ � 2x1

jx2ð1Þ þ x2ð2Þ � 2x1j
, (11)
Fig. 9. The basins of attraction in the principal plane for detuning parameter, ŝ ¼ 0:132777. Enlargement of Z4 in Fig. 8; n, the unstable

equilibrium solution UT2-1. The gray and white basins are attracted to ST1-1 and chaotic motion generated from UT2-1, respectively.

Fig. 10. The basins of attraction in the principal plane for detuning parameter, ŝ ¼ 0:132777. Enlargement of Z5 in Fig. 9; n, the unstable

equilibrium solution UT2-1. The gray and white basins are attracted to ST1-1 and chaotic motion generated from UT2-1, respectively.
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where x1, x2(1) and x2(2) denotes SS2 , UT2-1 and UT2-2, respectively. Unit vectors defining the principal plane
are given in Table 2, where

ui ¼
X4
j¼1

uijej . (12)

It should be noted that the principal plane varies with ŝ. In Tables 1 and 2 are listed the data for not only
the case of ŝ ¼ 0:132777 but also some other cases for the later reference. A point x in the plane can be
expressed as

x ¼ x1 þ g ¼ x1 þ
X2
i¼1

Ziui. (13)
Fig. 11. The basins of attraction in the principal plane for detuning parameter, ŝ ¼ 0:132777. Enlargement of Z6 in Fig. 10. The gray and

white basins are attracted to ST1-1 and chaotic motion generated from UT2-1, respectively.

Fig. 12. Log–log diagram for measurement of the box-counting dimension of the fractal basin boundary. The dimension is 1.537 noted as

the slope of the linear regression line.
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Fig. 13. Phase trajectories and basin boundaries of modulated motions in a period-doubling sequence. (a) es ¼ 0.132643(period-1, fractal

dimension ¼ 1.049). (b) es ¼ 0.132752(period-2, fractal dimension ¼ 1.135). (c) es ¼ 0.132771(period-8, fractal dimension ¼ 1.303).

(d) es ¼ 0.1327713(period-32, fractal dimension ¼ 1.327). (e) es ¼ 0.132777(period-N, fractal dimension ¼ 1.537). The grey and white

basins are attracted to ST1-1 and modulated motions generated from UT2-1, respectively.

H.D. Park, W.K. Lee / Journal of Sound and Vibration 315 (2008) 556–568566
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The equilibrium points SS2, UT2-1 and UT2-2 are denoted by a square (&), an upward triangle (n) and a
downward triangle (,), respectively, in Fig. 8. The figure shows five basins of attraction represented by SS2
(black), UT2-1 (white in the right), UT2-2 (white in the left), and two traveling waves ST1-1 (gray), ST1-2
(dark gray), each of which is attracted to each of five attractors. In order to examine more closely the basin of
attraction of chaotic motion (UT2-1), we enlarge region Z4 to obtain Fig. 9. Consecutively enlarged results are
shown in Figs. 10 and 11, from which we can see that the basin boundary of the chaotic motion has the
unlimited number of lines with self-similarity. This is the fractal nature of the basin boundary. The long-term
response of the plate varies even with small change of initial condition in this boundary.

In order to measure quantitative characterization of the geometrical structure of the boundary, we need to
determine its fractal dimension. Among several kinds of the dimensions, the box-counting dimension is
calculated in this study. We cover the space in the principal plane, including the boundary, by a grid of squares
of edge length eo. We then count the number of squares M(eo) needed to cover the boundary. The box-
counting dimension [16–19] d is given by

d ¼ lim
�o!0

ln Mð�oÞ

lnð1=�oÞ
. (14)

The dimension d is represented by the slope of the straight solid line in Fig. 12 showing the log–log diagram.
The basin boundary of the chaotic motion on the principal plane is shown to have a fractal dimension of 1.537.

4.4. Evolution of basin boundaries of modulated motions

In the previous section, for the case of {e, o11, ec11, eP11, g} ¼ {0.001067, 21.2604, 0.01, 4, �772.046}, it was
found that system (1) experiences Hopf bifurcation at es ¼ 0.132643, at which two of traveling waves lose
their stability. A sequence of period-doubling bifurcations leads to chaos when es ¼ 0.132777. When es is
between these values, the system has five attractors: three equilibrium solutions (three periodic waves: one
standing wave and two traveling waves) and two modulated motions (two quasi-periodic traveling waves). We
examine how the basin boundaries evolve as es varies. We also calculate the box counting dimensions [19] of
the basin boundaries. By means of Tables 1 and 2, the results are shown in Fig. 13. Phase trajectories and
basin boundaries corresponding to the different values of es are shown in the left- and right-hand sides of the
figure, respectively. The white (UT2-1) and gray (ST1-1) regions in the right-hand side of the figure represent
domains of attraction of non-periodic and periodic traveling waves, respectively, where both types of traveling
waves are rotating clockwise. Examining the evolution and fractal dimensions of basin boundaries, we can
observe that the basin boundaries of the modulated motions turn out to have the fractal nature.

5. Conclusions

In order to investigate further nonlinear asymmetric vibrations of a clamped circular plate under a
harmonic excitation, we reexamine a primary resonance (lEo11), studied by Yeo and Lee [3] in which at most
three stable steady-state responses (one standing wave and two traveling waves) are observed to exist. Further
examination, however, tells that there exist at most five stable steady-state responses: one standing wave and
four traveling waves. Two of the traveling waves lose their stability by Hopf bifurcation and have a sequence
of period-doubling bifurcations leading to chaos. When the system has five attractors: three equilibrium
solutions (one standing wave and two traveling waves) and two chaotic attractors (two modulated traveling
waves), the basin boundaries of the attractors on the principal plane are obtained. Also examined is how basin
boundaries of the modulated motions (quasi-periodic and chaotic motions) evolve as a system parameter
varies. The basin boundaries of the modulated motions turn out to have the fractal nature.
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